Mineralization of phosphorylated cellulose: Crucial role of surface structure and monovalent ions for optimizing calcium content


Lukasheva N.V., Tolmachev D.A., Mikko Karttunen


Cellulose can be phosphorylated to produce organic matrices with highly adsorptive properties for, e.g., biocompatible materials for biomedical applications. We focus on the effects of phosphorylation of surfaces of crystalline nanocellulose and, in particular, on the competitive adsorption of mono- and divalent cations (Na+and Ca2+) typically contained in mineralizing salt mixtures using all-atom molecular dynamics (MD) simulations. Phosphorylation was applied at 12% and 25% both in water and CaCl2 solutions. Our main result shows that Na+and Ca2+ cations are concentrated in different interfacial layers with Na+ ions penetrating much closer to the surface. This behavior cannot be described by the Poisson–Boltzmann theory or implicit solvent simulations. Our analysis shows that the physical origin of this observation is due to a balance between the electrostatic interactions and hydration free energy associated with the ions. Adsorption levels of the different ions also respond differently to changes in the degree of phosphorylation. We show that the number of adsorbed Na+ions per phosphate group increases whereas the number of adsorbed Ca2+ ions decreases with an increasing degree of phosphorylation (or when the number of binding sites increases). The decrease in the number of adsorbed Ca2+ ions can be explained by an increasing “charge–charge” repulsion between the Ca2+ ions attracted by the charged surface. Importantly, our results demonstrate the existence of an optimum degree of phosphorylation in terms of adsorbed Ca2+ ions and can be used as a guideline in materials design, for example, when choosing the cellulose matrix or with other similarly structured biomolecular and polymer surfaces.

Список Публикаций:


1. Dobrynin M. V. Cellulose-based hybrid glycosilicones via grafted-to metal-catalyzed hydrosilylation : “ When opposites unite .” [Текст] /M. V. Dobrynin, V. Yu,  R.M. Islamova// Carbohydr. Polym. – 2020 – V. 241 – P. 116327, doi:10.1016/j.carbpol.2020.116327.
2. Smirnov M.A. Green method for preparation of cellulose nanocrystals using deep eutectic solvent [Текст] /M.A. Smirnov,  M.P. Sokolova,  D.A. Tolmachev,  V.K. Vorobiov,  I.A. Kasatkin, N.N. Smirnov, A. V. Klaving,  N. V. Bobrova,  N. V. Lukasheva,  A. V. Yakimansky // Cellulose – 2020 – V.27 – P.4305–4317, doi:10.1007/s10570-020-03100-1.
3. Glova A.D. Grafted Dipolar Chains: Dipoles and Restricted Freedom Lead to Unexpected Hairpins [Текст] /A.D. Glova,  S.V. Larin,  V.M. Nazarychev, M. Karttunen, S. V. Lyulin// Macromolecules – 2020 – V.53 – P.29–38, doi:10.1021/acs.macromol.9b02288.

4. Tolmachev D.A. Influence of calcium binding on conformations and motions of anionic polyamino acids. Effect of side chain length [Текст] / D.A. Tolmachev, N.V. Lukasheva, G.Z. Mamistvalov, M. Karttunen // Polymers (Basel).  – 2020 – V.12 – P.1279; doi:10.3390/polym12061279.
5. Stepanova M.A. Composite Biomaterials Based on Poly(L-Lactic Acid) and Functionalized Cellulose Nanocrystals [Текст] / M. Stepanova, I. Averianov, O. Solomakha, N. Zabolotnykh, I. Gofman, M. Serdobintsev, T. Vinogradova, V. Korzhikov-Vlakh, E. Korzhikova-Vlakh // Journal of Renewable Materials  –  2020  – V.78(4) – P. 383-395; doi: 10.32604/jrm.2020.09206.


1. Buyanov A.L. High-strength cellulose–polyacrylamide hydrogels: Mechanical behavior and structure depending on the type of cellulose [Текст] / A.L. Buyanov, I.V. Gofman, N.N. Saprykina // Journal of the Mechanical Behavior of Biomedical Materials – 2019. – V. 100. – P.103385. DOI: 10.1016/j.jmbbm.2019.103385

2. Averianov I.V. Chemical modification of nanocrystalline cellulose for enhanced interfacial compatibility with poly(lactic acid) [Текст] / I.V. Averianov, M.A. Stepanova, I.V. Gofman, A.L. Nikolaeva , V.A. Korzhikov-Vlakh, M. Karttunen, E.G. Korzhikova-Vlakh // Mendeleev Comm. – 2019. – V. 29 – N.2. – P.220. DOI: 10.1016/j.mencom.2019.03.036

3. Deriabin K.V. Platinum-catalyzed reactions between Si–H groups as a new method for cross-linking of silicones [Текст] /K.V. Deriabin, E.K. Lobanovskaia, A.S. Novikov, R.M. Islamova // Org. Biomol. Chem. – 2019. – V. 17 – P.5545. DOI: 10.1039/C9OB00791A

4. Tolmachev D. A. Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections, [Текст] / D.A. Tolmachev, O.S. Boyko, N.V. Lukasheva H. Martinez-Seara, Mikko Karttunen // J. Chem. Theory Comput. – 2019. Publication Date: November 22, 2019 DOI:/10.1021/acs.jctc.9b00813

5. Stepanova M.A. PGlu modified nanocrystalline cellulose improves mechanical properties, biocompatibility and mineralization of polyester-based composites [Текст] / M. Stepanova, I. Averianov, M. Serdobintsev, I. Gofman, N. Blum, N. Semenova, Y. Nashchekina, T. Vinogradova, V. Korzhikov-Vlakh, M. Karttunen, E. Korzhikova-Vlakh // Materials – 2019. –V.12. – ID. 3435. DOI:/10.3390/ma12203435

6. Gurtovenko A. A.; Controlled On–Off Switching of Tight-Binding Hydrogen Bonds between Model Cell Membranes and Acetylated Cellulose Surfaces [Текст] / A.A. Gurtovenko, M. Karttunen, // Langmuir – 2019. – V. 35. – N.42. P. 13753 – 13760. DOI:/10.1021/acs.langmuir.9b02453

7. Stepanova M.A. Comparison of supermacroporous polyester matrices fabricated by thermally induced phase separation and 3D printing techniques [Текст] / M. Stepanova, A. Eremin, I. Averianov, I. Gofman, A. Lavrentieva, V. Korzhikov-Vlakh, E. Korzhikova-Vlakh // Key Engineering Materials. 2019. V. 822. P. 277-283. DOI:/10.4028/www.scientific.net/KEM.822.277


1. Lukasheva N.V. Mineralization of phosphorylated cellulose: Crucial role of surface structure and monovalent ions for optimizing calcium content [Текст] / N.V. Lukasheva, D.А. Tolmachev, M. Karttunen // Phys.Chem.Chem.Phys. – 2018. Accepted Manuscript. DOI:10.1039/C8CP05767B.

2. Gurtovenko A. A. Phospholipid–Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes.[Текст] / A.A. Gurtovenko, E.I. Mukhamadiarov, A.Y. Kostritskii, M. Karttunen, / /J. Phys. Chem. B –  2018. – V. 122. – N.43. P. – 9973–9981. DOI: 10.1021/ACS.JPCB.8B07765

3. Borisov O.V. Conformations of Polyelectrolyte Molecular Brushes: A Mean-Field Theory. / O.V. Borisov, E.B. Zhulina [Текст] // J. Chem. Phys. – 2018. – V. 149 – N.18. – P.184904. DOI: 10.1063/1.5051353

4. Smirnov M.A. Electrochemical properties of supercapacitor electrodes based on polypyrrole and enzymatically prepared cellulose nanofibers [Текст] / M.A. Smirnov, V.K. Vorobiov, M.P. Sokolova, N.V. Bobrova, E. Lahderanta, S. Hiltunen, A.V. Yakimanskiy // Polymer Science – 2018. – Series C – V. 60 – № 2 – P. 334–345. DOI: 10.1134/S230811471802019X

5. Deriabin K.V. Similar nature leads to improved properties: cyclic organosilicon triperoxides promising curing agents for liquid polysiloxanes [Текст] / K.V. Deriabin, I.A. Yaremenko, M.V. Chislov, F. Fleury, A.O. Terent'ev, R.M.Islamova // New J. of Chemistry. – 2018. – V.42. – N.18. – Р. 15006-15013. DOI: 10.1039/C8NJ02499E.



1. Kostritskii A.Y. Molecular-Level Insight into the Interaction of Phospholipid Bilayers with Cellulose [Текст]/ A. Y. Kostritskii, D. A. Tolmachev, N. V. Lukasheva, A. A. Gurtovenko // Langmuir – 2017. – Т. 33 – № 44– P. 12793–12803. doi: 10.1021/acs.langmuir.7b02297

2. Polotsky A.A. Unfolding of a comb-like polymer in a poor solvent: translation of macromolecular architecture in the force–deformation spectra [Текст]/ A. A. Polotsky, T. M. Birshtein, A. A. Mercurieva, F. A. M. Leermakers, O. V. Borisov // Soft Matter – 2017. – V. 13 – № 48– P. 9147–9161. doi: 10.1039/C7SM01589E

3. Smirnov M.A. Synergistic effect of chitin nanofibers and polyacrylamide on electrochemical performance of their ternary composite with polypyrrole [Текст]/ M. A. Smirnov, M. P. Sokolova, N. V. Bobrova, A. M. Toikka, P. Morganti, E. Lahderanta // J. Energy Chem. – 2018 – V. 27 – № 3,  P. 843-853. doi:10.1016/j.jechem.2017.06.002

4. Averianov I. V. One-pot synthesis of poly(lactic acid) with terminal methacrylate groups for the adjustment of mechanical properties of biomaterials [Текст]/ I. V. Averianov, V. A. Korzhikov-Vlakh, Y. E. Moskalenko, V. E. Smirnova, T. B. Tennikova // Mendeleev Commun. – 2017. – V. 27 – № 6– P. 574–576. doi: 10.1016/j.mencom.2017.11.012

5. Islamova R.M. Iridium(III)-catalysed cross-linking of polysiloxanes leading to the thermally resistant luminescent silicone rubbers [Текст]/ R. M. Islamova, M. V Dobrynin, A. V Vlasov, A. A. Eremina, M. A. Kinzhalov, I. E. Kolesnikov, A. Zolotarev, E. A. Masloborodova, K. Luzyanin // Catal. Sci. Technol. – 2017. – V. 1– P. 1–4 doi: 10.1039/C7CY02013A

6. Glova A.D. Scale-Dependent Miscibility of Polylactide and Polyhydroxybutyrate: Molecular Dynamics Simulations [Текст] / A,D. Glova, S.G. Falkovich, D.I. Dmitrienko, A.V. Lyulin, S.V. Larin, V.M. Nazarychev, M. Karttunen, S.V. Lyulin // Macromolecules – 2018. – V.51 – P, 552–563 doi: 10.1021/acs.macromol.7b01640

Список организованных конференций:

  1. 6-я международная конференция по термопластичным полимерам. 12-13 сентября 2019 г.

  2. 14-я международная Санкт-Петербургская конференция молодых ученых «Современные проблемы науки о полимерах» 12-14 ноября 2018 г.

  3. The International Workshop on Characterization of Interactions at Surfaces – Focus on Cellulose 27 августа 2018 г.

  4. 13-я международная Санкт-Петербургская конференция молодых ученых «Современные проблемы науки о полимерах» 13-16 ноября 2017 г.

IMC RAS | laboratory № 23 polymer biomaterials and systems | polybiomas@gmail.com